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Abstract

Here presented is the interrelationship between Eulerian polynomials, Eule-
rian fractions and Euler-Frobenius polynomials, Euler-Frobenius fractions, B-
splines, respectively. The properties of Eulerian polynomials and Eulerian frac-
tions and their applications in B-spline interpolation and evaluation of Riemann
zeta function values at odd integers are given. The relation between Eulerian
numbers and B-spline values at knot points are also discussed.
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1 Introduction

Eulerian polynomial sequence {An(z)}n≥0 is defined by the following summation (cf.
for examples, [1], [2], and [3]):

∑
`≥0

`nz` =
An(z)

(1− z)n+1
, |z| < 1. (1.1)

It is well-known that the Eulerian polynomial, An(z) (see p. 244 of [3]), of degree n
can be written in the form

An(z) =

n∑
k=1

A(n, k)zk, A0(z) = 1, (1.2)

where A(n, k) are called the Eulerian numbers that can be calculated by using

A(n, k) =

k∑
j=0

(−1)j
(
n+ 1

j

)
(k − j)n, 1 ≤ k ≤ n, (1.3)
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and A(n, 0) = 1. The Eulerian numbers are found, for example, in the standard
treatises by Riordan [4], Comtet [3], Aigner [5], Grahm et al. [6], etc. However, their

notations are not standard, which are shown by An,k, A(n, k), Wn,k,

〈
n
k

〉
, and

E(n, k), respectively. The Eulerian number A(n, k) gives the number of permutations
in the symmetric group of order n that have exactly k − 1 ascents, or equivalently,
the number of permutation runs of length k − 1 (cf. [3]), where in an ascending
sequence of permutation, j is a permutation ascent if the jth term in the sequence
less than the j+ 1st term. A geometric interpretation of A(n, k) is given in [8]. One
may re-write (1.3) as

A(n, k) =

n∑
j=0

(−1)j
(
n+ 1

j

)
(k − j)n+, 1 ≤ k ≤ n,

where (a)+ = max{0, a}, which provides an interrelation between Eulerian numbers
and B-spline values at knot points due to the expression of B-spline shown below in
(1.5). It is well-known that the Eulerian fraction is a powerful tool in the study of
the Eulerian numbers, Eulerian polynomial, Euler function and its generalization,
Jordan function, number theory, etc. (cf. [9]). The classical Eulerian fraction,
αn(x), can be expressed in the form

αn(z) :=
An(z)

(1− z)n+1
, z 6= 1. (1.4)

Polynomial spline functions can be considered as broken polynomials with certain
smoothness, which are used to overcome the stiffness of polynomials, for instance
the Runge phenomenon in the polynomial interpolation. B spline functions are
probably the most applicable one-dimensional polynomial spline functions, where
B-spline, denoted by M(x) ≡M(x;x0, . . . , xn) (x0 < xx < · · · < xn), is defined by

M(x;x0, . . . , xn) =

n∑
j=0

n(xj − x)n−1
+

ω′(xj)
, x ∈ R, (1.5)

where ω(x) = (x − x0) · · · (x − xn) and x+ = max{0, x} (cf. [10]). The nth order
cardinal forward B-spline Bn = M(x; 0, 1, . . . , n), or simply, B-spline of order n, can
be defined by

Bn(x) = (Bn−1 ∗B1)(x) =

∫ 1

0

Bn−1(x− t)dt, n ≥ 2,

where B1 is the characteristic function of the interval [0, 1). It is clear that Bn(x) ∈
Cn−2 is a piecewise polynomial of degree n − 1. One may find more details on
the splines and B-splines in [9]-[13] and [14] and some applications in [15] and [16].
In [17], Dyn and Ron considered periodic exponential B-splines defined by weight
functions wi(u) = eaiuri(u) with ri(u + 1) = cri(u), ai ∈ R, and showed these B-
splines possess a significant property of translation invariant and satisfy a generalized
Hermite-Genocchi formula. Ron also defined the higher dimensional n-directional
exponential box splines in [18].
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In this paper, we are more interested in another approach to construct the ex-
ponential splines to the base z by using a linear combination of the translations of
a polynomial B-spline with combination coefficients zj . The exponential splines to
the base z can be presented and evaluated by using exponential Euler polynomials
(EEPs), which connect to some famous generating functions (GF’s) in the combi-
natorics. The details can be found in Lecture 3 of [10] [11], [13], and Chapter 2 of
[12]. For the sake of convenience, we shall briey quote them in the next section.
This approach also build a strong interrelationship between two different fields of
spline approximation and combinatorics. For instance, we shall see the equivalence
between Eulerian polynomials and Euler-Frobenius polynomials, Eulerian numbers
and B-spline values, Eulerian fractions and Euler-Frobenius fractions, etc. All of
those as well as some properties will be presented in Section 2. The applications
in spline image interpolation and wavelet analysis and evaluation of Riemann zeta
function values at odd integers will be discussed in Section 3.

Only after finishing the paper did we find out that one of our results shown in
Corollary 2.7, the relation between the Eulerian numbers and the B-spline values
at integers, was obtained by Wang et al. in [20] using a different approach, where
the relation was considered as the spline interpretation of Eulerian numbers. For
the sake of readers’ convenience, we retain the results. In [20], spline interpretation
of refined Eulerian numbers was also given. However, the interrelationships among
the Eulerian polynomials, spline functions, Eulerian fractions, and Euler-Frobenius
polynomials, etc. and their applications are not discussed, which is the main body
of this paper.

This paper is prepared partially based on the conference talk notes [19]. The
author greatly appreciate the discussion with Carl deBoor since 2005 [21] and the
valuable suggestions and the lecture [12] he offered fervently.

2 Eulerian polynomials and B-splines

Let n be a non-negative integer. The symbol Sn denote the class of splines of order
n, i.e., functions s(x) satisfying the following conditions: (1) s(x) ∈ Cn−1(R) and
(2) s(x) ∈ πn in each interval (j, j + 1), j = 0,±1,±2, . . . , where πn is the class
of polynomials of degree not exceeding n. An exponential spline f ∈ Sn means an
element in Sn satisfying the functional equation

f(x+ 1) = cf(x). (2.1)

Let us recall the notations presented in the central part of Schoenberg’s lectures
on “Cardinal Spline Interpolation” (CSI) (cf. [10]). First, the exponential spline
φn(x; z) of degree n to the base z is defined by

φn(x; z) :=

∞∑
−∞

zjBn+1(x− j),

where Bn(x) := M(x; 0, 1, · · · , n) denotes the cardinal B-spline, or simply, B-spline
(cf. introduction). Obviously, Bn(x) ∈ Sn−1. Therefore, φn ∈ Sn, and it is easy
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to find φn satisfies (2.1); i.e., φn(x + 1; z) = zφn(x; z). In addition, φn(x; z) is a
polynomial in the interval 0 < x < 1 with the form

φn(x; z) =
1

n!
(1− z−1)nxn + lower degree terms

for 0 < x < 1. Hence, An(x; z) (Noting An(x; z) is not An(x)) defined by

An(x; z) := n!(1− z−1)−nφn(x; z), 0 ≤ x ≤ 1, z 6= 0, 1, (2.2)

is a monic polynomial in 0 ≤ x ≤ 1, which is called the exponential Euler polynomial
(EEP) of degree n to the base z. Furthermore, from [10], the generating function of
{An(x; z)} is

z − 1

z − et
ext =

∑
n≥0

An(x; z)
tn

n!
. (2.3)

If x = 0, then (2.3) reduces to

z − 1

z − et
=
∑
n≥0

βn(z)
tn

n!
, (2.4)

where βn(z) = An(0; z). It is easy to see that

An(x; z) =

n∑
j=0

(
n

j

)
βj(z)x

n−j . (2.5)

In particular,

An(1; z) =

n∑
j=0

(
n

j

)
βj(z). (2.6)

Hence, we call βn(z) the Euler-Frobenius fraction for the reason shown below.
In addition, multiplying (2.4) by z − et and comparing the coefficients of the

powers of z, we have the relations

β0(z) = 1 zβn(z) =

n∑
k=0

(
n

k

)
βk(z). (2.7)

Jointing (2.6) and (2.7) yields

An(1; z) = zAn(0; z). (2.8)

Finally, we call

Πn(z) := βn(z)(z − 1)n ≡ An(0; z)(z − 1)n (2.9)

the Euler-Frobenius polynomials. Since

An(0; z) := n!(1− z−1)−nφn(0; z) = n!(1− z−1)−n
∞∑
−∞

zjBn+1(−j), (2.10)



Eulerian Polynomials and B-Splines 5

Πn(z) defined by (2.9) can be written as

Πn(z) = n!

∞∑
−∞

Bn+1(−j)zn+j = n!

n−1∑
j=0

Bn+1(n− j)zj = n!

n−1∑
j=0

Bn+1(j + 1)zj .

(2.11)

From (2.11), we know Πn(z) has n−1 zeros, and all of them are negative and simple.
In addition, λ is a zero of Πn if and only if 1/λ is its zero. The proofs can be found,
for example, from [12].

Thus, we have two triples of concepts from combinatorics and spline approxi-
mation, respectively, namely, Eulerian polynomials, Eulerian numbers, and Eulerian
fractions, (An(z), α(z), A(n, k)), and Euler-Frobenius polynomials, Euler-Frobenius
fractions, and B-spline values, (Πn(z), βn(z), Bn(k)), where n ≥ k ≥ 0 We now es-
tablish a connection between them, i.e., Eulerian polynomials and , Euler-Frobenius
polynomials, Eulerian fractions and the coefficients of Euler-Frobenius polynomials,
and Eulerian numbers and discrete B-splines {Bn(k)}n≥k≥0.

Theorem 2.1 Let Πn(z) and βn(z) be the polynomials defined by (2.9) and (2.4),
respectively, and let Eulerian polynomials An(z) and Eulerian fractions αn(z) be
defined by (1.1) and (1.4), respectively. Then we can set the interrelationship between
the concepts as

An(z) =

{
Πn(z) = 1 if n = 0

zΠn(z) if n > 0,
(2.12)

βn(z) =

{
(1− z)αn(z) = 1 if n = 0
1−z
z (−1)nαn(z) if n > 0

. (2.13)

Proof. From (2.4) and (2.9) we have

1

et − z
=
∑
n≥0

Πn(z)

(1− z)n+1

(−t)n

n!
.

Transferring t to −t, we change the above equation as

et

1− zet
=
∑
n≥0

Πn(z)

(1− z)n+1

tn

n!
.

The left-hand side of the above equation can be expanded as

et

1− zet
=
∑
`≥0

z`e(`+1)t =
∑
`≥0

∑
n≥0

(`+ 1)nz`
tn

n!
.

Comparing the right-hand sides of the last two equations yields

Πn(z)

(1− z)n+1
=
∑
`≥0

(`+ 1)nz`. (2.14)



6 T. X. He

In the introduction, the definitions of Eulerian polynomials and Eulerian fractions
are given in (1.1) and (1.4), respectively. Comparing (1.1) and (2.14), we obtain
(2.12). Therefore, (2.13) is implied by using (2.12) in the comparison of (1.4) and
(2.9) and noting βn(z) = An(0; z).

From Theorem 2.1, we know that Π0(z) = 1 = E0(z); Π1(z) = 1, E1(z) = z;
Π2(z) = 1 + z, E2(z) = z + z2, etc.

Remark 2.1 Some immediate results can be found from Theorem 2.1. For examples,
(2.14) implies

Πn+1(z) = (1 + nz)Πn(z) + z(1− z)Π′n(z). (2.15)

Consequently, from (2.12) we have

An+1(z) = (n+ 1)zAn(z) = z(1− z)A′n(z),

and from (1.4)

αn+1(z) = zα′n(z)− (n+ 1)αn(z).

Using Theorem 2.1, we can obtain many (well-known or non-well-known) prop-
erties of Eulerian polynomials, Eulerian numbers, and Eulerian fractions from the
properties of Euler-Frobenius polynomials, B-splines, and EEPs and vice versa. Here
are few examples.

Corollary 2.2 Eulerian polynomials can be defined by

An(z) = n!

n∑
j=1

Bn+1(j)zj ,

where Bn(x) denotes the cardinal forward B-spline of order n.

Proof. This is a straight result from Theorem 2.1 and expression (2.11).

Remark 2.2 It is well-known that cardinal forward B-spline Bn(x) satisfies

Bn+1(k) =
n− k + 1

n
Bn(k − 1) +

k

n
Bn(k),

or equivalently,

Bn+1(k) =
1

n!

n+1∑
j=0

(−1)j
(
n+ 1

j

)
(k − j)n+ =

1

n!

k∑
j=0

(−1)j
(
n+ 1

j

)
(k − j)n (2.16)

for 1 ≤ k ≤ n, where (k − j)0
+ = 1 if k ≥ j and 0 otherwise, and (k − j)m−1

+ =
(k − j)m−1 if k ≥ j and 0 otherwise and the first equation can be seen in P. 11 of
[10] or P. 135 of [14]. Formula (2.16) can also be derived from two expressions of
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Πn(z) shown as in (2.9) and (2.14). In fact, multiplying (1− z)n+1 on both sides of
(2.14) yields

Πn(z) = (1− z)n+1
∑
`≥0

(`+ 1)nz`

=
∑
`≥0

n+1∑
k=0

(−1)k
(
n+ 1

k

)
(`+ 1)nz`+k =

∑
j≥0

j∑
`=0

(−1)j−`
(
n+ 1

j − `

)
(`+ 1)nzj

=
∑
j≥0

j+1∑
`=0

(−1)`
(
n+ 1

`

)
(j − `+ 1)nzj .

Comparing the coefficients of zj on rightmost side of the last equation and the right-
hand side of (2.11), we obtain

Bn+1(j + 1) =
1

n!

j+1∑
`=0

(−1)`
(
n+ 1

`

)
(j + 1− `)n, 0 ≤ j ≤ n,

i.e., (2.16) when k = j + 1, and

Bn+1(j + 1) =
1

n!

j+1∑
`=0

(−1)`
(
n+ 1

`

)
(j + 1− `)n =

1

n!
∆j+1tn

∣∣
t=0

= 0

for all j ≥ n.

Corollary 2.3 The generating functions of {An(z)} and {αn(z)} are respectively

(1− z)zet(1−z)

1− zet(1−z)
=
∑
n≥0

An(z)
tn

n!
(2.17)

1

1− zet
=
∑
n≥0

αn(z)
tn

n!
. (2.18)

Proof. Using transform t 7→ t(z−1) into (2.4) and, then, substituting relations (2.9)
and (2.12) successively in the resulting equation, we have (2.17).

Similarly, substituting (2.13) into (2.4) yields (2.18).

Remark 2.3 From (2.17), we can show formula [5i] of [3] readily. By using transform
t 7→ t(z−1) into (2.4) and then substituting relations (2.9) and (2.12) in the resulting
equation we obtain

1 +
1

z

∑
n≥1

An(z)
tn

n!
=

z − 1

z − et(z−1)
.

Hence, ∑
n≥0

An(z)
tn

n!
=

(z − 1)z

z − et(z−1)
− z + 1 =

1− z
1− zt(1−z)

,

which gives formula [5i] on page 244 of [3].
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Corollary 2.4 Let Eulerian fractions αn(z) be defined by (1.4). Then βn(z) can be
evaluated recursively by using the relation

α0(z) =
1

1− z
, (−1)nzαn(z) =

z

1− z
+

n∑
k=1

(−1)k
(
n

k

)
αk(z) (2.19)

for n > 0.

Proof. Obviously, (2.19) is the result of the substitution of (2.13) into (2.7).

Let z 6= 0, 1. It is well-known that the Eulerian fraction defined by (1.4) can be
written as

αn(z) =

n∑
j=0

j!S(n, j)
zj

(1− z)j+1
, (2.20)

where S(n, j) are the Stirling numbers of the second kind, i.e., j!S(n, j) =
[
∆jtn

]
t=0

,
or equivalently, the number of partitions of n distinct elements in j blocks. Hence,
from (2.13) and the above formula we have an expression in terms of βn(z) accord-
ingly.

Corollary 2.5 Let βn(z) be the Euler-Frobenius fractions defined by (2.4). Then

βn(z) = (−1)n
n∑

j=0

j!S(n, j)
zj−1

(1− z)j
, (2.21)

where S(n, j) are the Stirling numbers of the second kind.

Thus, from (2.2), the Euler polynomial of degree n defined by (2.3) for z = −1
can be written as

An(x;−1) = n!2n
∞∑
−∞

(−1)jBn+1(x− j).

We shall give other expressions of Euler polynomials in terms of Eulerian fractions
and Eulerian polynomial values by using Theorem 2.1.

Corollary 2.6 Let An(x;−1) be the Euler polynomial of degree n defined by expan-
sion (2.3). Then it can be expressed as

An(x;−1) =
n∑

j=0

(
n

j

)
(−1)j+1αj(−1)xn−j =

n∑
j=0

(
n

j

)
(−1)j+1

2j
Aj(−1)xn−j

=

n∑
j=0

j∑
k=1

(
n

j

)
(−1)j+k+1j!

2j
Bj+1(k)xn−j .

Proof. The first expression is from (2.9) for z = −1 and (2.21) in Theorem 2.1.
By substituting (2.18) for z = −1 into the first expression, we obtain the second
expression, from which the rightmost equation is derived by using (2.13) for z = −1
and (2.20) in Theorem 2.1.



Eulerian Polynomials and B-Splines 9

Using (2.12) of Theorem 2.1 in the comparison between (1.2) and (2.11), we
immediately have the following corollary (see [20] in a different approach).

Corollary 2.7 (also see [20]) Let Eulerian numbers A(n, k) be defined by (1.2).
Denote the cardinal forward B-spline of order n by Bn(x). Then

A(n, k) = n!Bn+1(k) (n > 0). (2.22)

Remark 2.4 Since the Eulerian number A(n, k) gives the number of permutations in
the symmetric group Sn that have exactly k−1 ascents, (2.22) implies that Bn+1(k)
give the probability of the the event when the permutations in the symmetric group
Sn that have exactly k − 1 ascents. In addition, expression (3) in Chapter 1 in
[22] shows that the values of B-spline functions can be defined as the n! multiple of
the volumes of slices of a n-dimensional cube. Hence, from the translation formula
(2.22), one can immediately give another proof of the result shown in [23] as well as
other geometric explanation of Eulerian numbers.

Furthermore, some well-known identities such as [5e], [5e’], and [5h], listed on
pages 242-243 in [3] and cited below:

A(n, k) = (n− k + 1)A(n− 1, k − 1) + kA(n− 1, k),

A(n, k) = A(n, n− k + 1),

xn =

n∑
k=1

A(n, k)

(
x+ k − 1

n

)
,

can be proved trivially using the corresponding identities of B-splines and (2.22). For
instance, the second equation of (2.16) implies the first formula. From the symmetry
of the B-spline values about the midpoint of the spline’s support, one may have the
second formula. The third one is also obvious from a well-known property of B-
splines.

3 Applications in B-spline image interpolation and
computational number theory

The essential property of B-splines Bn(x) of order n is to provide a basis of the
subspace of all continuous or differentiable piecewise polynomial functions of degree
n. Image interpolation plays a central role in many applications in image processing
and engineerings. B-spline interpolation is a powerful tool in the image interpolation.
In the case of equally spaced integer knot point, any piecewise polynomial function
an+1(x) of degree n with Cn−1 continuity can be presented as

an+1(x) =

∞∑
j=−∞

cn(j)Bn+1(x− j), (3.1)

where an+1(x) is uniquely determined by its B-spline coefficients {cn(j)}. For a
given positive integer m, let us consider a discrete signal {fm (k)} defined on k =
0, ±1, ±2, . . . , where fm(k) = f(`) if k = m` and 0 otherwise. We now seek the
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interpolatory function an+1(x) of the form shown in (3.1) such that

fm (k) = an+1

(
k

m

)
=

∞∑
j=−∞

cn(j)bn+1,m(k − jm), (3.2)

where bn+1,m(k) are discrete splines of order n+ 1 with respect to m ∈ N defined by
sampling continuous Bn+1(x). More precisely, from [14] (P.135), we have

Bn(x) =

n∑
j=0

(−1)j

(n− 1)!

(
n

j

)
(x− j)n−1

+ ,

where (x− j)0
+ = 1 if x ≥ j and 0 otherwise, and (x− j)m−1

+ = (x− j)m−1 if x ≥ j
and 0 otherwise. Thus, we define bn,m(k) by

bn,m(k) ≡ Bn

(
k

m

)
=

1

mn−1

n∑
j=0

(−1)j

(n− 1)!

(
n

j

)
(k − jm)n−1

+ . (3.3)

In [24], Unser, Aldroubi, and Eden presented a method for the image interpolation
using fast B-spline transform as follows. The key steps are to take the Z-transform
to (3.2) as

F (zm) = Bn+1,m(z)Cn(zm),

where Bn+1,m(z) is the Z-transform of {bn+1,m(k)}k, and use a polynomial sequence
{An(z)} in z−1 defined by

An(z) = (1− z−1)n+1
∞∑

j=−∞
jnz−jµ(j),

where µ(k) is the step function taking value 1 when x ≥ 0 and 0 otherwise. However,
the computational manner of An(z) is lacked in [24]. Actually, transferring z to z−1

in An(z) yields

An(z−1) = (1− z)n+1
∑
j≥0

jnzj = An(z).

Thus, An(z) is the nth Eulerian polynomial in terms of z−1 from a simple observation
of (1.1), namely,

An(z) = An(z−1). (3.4)

Thus, following the process of [24] and using Eulerian polynomials, we obtain the
Z-transform of {bn+1,m(k)} as

Bn+1,m(z) =
1

mn

∞∑
k=−∞

n+1∑
j=0

(−1)j

n!

(
n+ 1

j

)
(k − jm)n+

 z−k

=
1

mn

n+1∑
j=0

(−1)j

n!

(
n+ 1

j

)
z−jm

∞∑
k=−∞

knz−kµ(k)

=
An(z−1)

(1− z−1)n+1mn

n+1∑
j=0

(−1)j

n!

(
n+ 1

j

)
z−jm =

1

mn

An(z−1)

n!

(
1− z−m

1− z−1

)n+1

.
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From (1.2) and Theorem 2.1, we know that

An(z−1)

n!
=

n∑
k=1

A(n, k)

n!
z−k =

n∑
k=1

Bn+1(k)z−k.

Therefore,

Bn+1,m(z) =
1

mn

m−1∑
j=0

z−j

n+1
n∑

k=1

Bn+1(k)z−k.

Therefore, noting An(z−1)/n! = zΠn(z−1)/n! =
∑n

k=1Bn+1(k)z−k and denoting

B0,m(z) =
∑m−1

j=0 z−j , we obtain the solution of the B-spline image interpolation as

Cn(zm) = n!mnF (zm)/(An(z−1)Bn+1
0,m (z)) = n!mnF (zm)/(zΠn(z−1)Bn+1

0,m (z)).
(3.5)

Surveying the above result based on [24], we have

Proposition 3.1 The B-spline image interpolation problem (3.2) has a unique so-
lution {cn(j)} with its Z-transform Cn(zm) shown in (3.5). In particular, if m = 1,
(3.2) is the cardinal B-spline interpolation with the solution

Cn(z) = n!F (z)/An(z−1), (3.6)

or equivalently,

cn(j) =

{
n!
∑0

`=−j f1(−j − `− 1)e(n, `) if j ≤ 0

n!
∑j−1

`=0 f1(−j − 1)e(n, `) if j ≥ 1
, (3.7)

where {f1(j)}∞j=−∞ is the given data set and

e(n, `) = −
∑
k≥1

A(n, k + 1)e(n, `− k). (3.8)

Proof. Let 1/An(z) = (1/z)
∑

`≥0 e(n, `)z
`. From

1 =
1

z
An(z)

∑
`≥0

e(n, `)z` =
∑
k≥0

A(n, k + 1)zk
∑
`≥0

e(n, `)z`,

and noting A(n, 1) = 1, we obtain (3.8) for the expressions of coefficients of reciprocal
series of 1/An(z−1). And (3.6) suggests

Cn(z)

= n!zF (z)
∑
`≥0

e(n, `)z−` = n!

∞∑
j=−∞

fi(j − 1)z−j
∑
`≥0

e(n, `)z−`

= n!

∑
j≥0

f1(j − 1)z−j
∑
`≥0

e(n, `)z−` +
∑
j≥1

f1(−j − 1)zj
∑
`≥0

e(n, `)z−`

 ,

which implies (3.7) by using Cauchy series multiplication.
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From Theorem 2.1 and (2.11), we have

An(z−1) = z−1Πn(z−1) = n!z−1
n−1∑
j=0

Bn+1(j + 1)z−j

= n!

n∑
j=1

Bn+1(j)z−j = n!Z({Bn+1(j)}j∈Z),

where Z({Bn+1(j)}j∈Z) is the Z-transform of {Bn+1(j)}j∈Z}. Hence, besides the
multiple of n!, nth order Eulerian polynomial in terms of z−1 is the Z-transform of
the discrete B-spline.

For m = 1, with a slight modification in (3.1) one may obtain the fundamental
cardinal spline function presented in [10]:

ãn(x) =

∞∑
j=−∞

cn(j)Bn

(
x+

n

2
− j
)
, (3.9)

where the cardinal B-spline basis function has support centered at 0. Using ãn(x)
as the interpolation basis functions, we need

∞∑
j=−∞

cn(j)Bn

(n
2

+ k − j
)

= δk,0, j ∈ Z,

where δk,0 is the Kronecker symbol. Taking the Z-transformation on the both sides
of the last equation yields

C̃n(z)B̃n(z) = 1,

and solve C̃n(z) = 1/B̃n(z), where

C̃n(z) =
∑
j∈Z

cn(j)z−j

and
B̃n(z) =

∑
j∈Z

Bn

(n
2

+ j
)
z−j =

∑
j∈Z

Bn

(n
2

+ j
)
zj .

The last equation comes from the symmetry of Bn(j + n/2) = Bn(n− j − n/2) and
the compactness of the support of Bn. We call both expressions of (n − 1)!B̃n(z)
the fundamental Eulerian polynomial or fundamental Euler-Frobenius polynomial of
order n.

By surveying the above results, we have

Proposition 3.2 For any n ∈ N, the Eulerian polynomial An(z−1) = n!
∑

j∈Z
Bn+1(j)z−j is a constant multiple of the Z-transform of {Bn+1(j) }0≤j≤n+1, or

equivalently, Ân(t) = n!
∑

j∈ZBn+1(j)eijt is the Fourier transform of {Bn+1(j)}0≤j≤n+1

up to a constant multiple. And the fundamental Eulerian polynomials (n−1)!
∑

j∈ZBn(j+

n/2)zj is a constant multiple of the Z-transform of {Bn(j + n/a)}j∈Z.
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From [25], one may find the fundamental Eulerian polynomials are strictly pos-
itive. [26] presents an extension of the fundamental Eulerian polynomials to the
higher dimensional setting:

PΞ(x) :=
∑
j∈Zd

MΞ(j)eijx, x ∈ Rd,

where MΞ is the box-spline generated by vector set Ξ = {ξ1, . . . , ξn}, ξ ∈ Zd. In
the bivariate case (d = 2), [26] proves the following conjecture: The polynomials PΞ

are strictly positive iff the box-splines MΞ(· − j), j ∈ Zd, are linearly independent.
If the conjecture is valid in general (d > 2), then it would imply that fundamental
cardinal interpolation is well posed when the obvious necessary condition of linear
independence is satisfied. For case d = 2, [27] shows that the box-splines are linearly
independent only on the regular three-direction mesh, i.e., Ξ = {(1, 0), (0, 1), (1, 1)}.
Thus, the fundamental cardinal bivariate box-spline interpolation over the regular
three-direction mesh is well posed.

We now consider the application of Euler-Frobenius fractions, βn(z) (|z| ≤ 1),
defined by (2.9), in computational number theory. Denote

γn(z) =
2(−1)n

1 + z
βn

(
−1

z

)
, (3.10)

where z ∈ [1, 1 + c], c > 0. Thus, from (2.14), we have

γn(z) =
2(−1)n

1 + z
βn

(
−1

z

)
=

2Πn

(
− 1

z

)
z
(
1−

(
− 1

z

))n+1

=
2

z

∑
`≥0

(`+ 1)n (−z)−` = −2
∑
`≥1

`n(−z)−`. (3.11)

We can also obtain the generating function of {γn(z)} from (2.4):

∑
n≥0

γn(z)
tn

n!
=

2

1 + z

∑
n≥0

βn

(
−1

z

)
(−t)n

n!
=

2

1 + z

− 1
z − 1

− 1
z − e−t

=
2et

z + et
. (3.12)

Recall the Euler polynomials An(x;−1) defined by (2.3) with z = −1, we know that
γn(1) = An(1;−1). In addition, it is easy to see γ−1(1) = 2 ln 2 and

γ−n(1) = −2(21−n − 1)ζ(n), (3.13)

where ζ(z) is the Riemann zeta function, and n > 1 is an integer. Finally, for z ≥ 1,

lim
n→∞

(
|φn(z)|
n!

)1/n

≤ 1

π
, (3.14)

and thus the series in Eq. (3.12) converges absolutely for |t| < π.
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For any positive integer k, we have

0 =

∞∑
n=1

(−u)−n sin(nπ)

n2k
=

∞∑
n=1

(−u)−n

n2k

∞∑
j=0

(−1)j
(nπ)2j+1

(2j + 1)!

=

∞∑
j=0

(−1)j+1uπ2j+1

2(2j + 1)!
γ2j+1−2k(u)

=

k−1∑
j=0

(−1)j+1uπ2j+1

2(2j + 1)!
γ2j+1−2k(u) +

∞∑
m=0

(−1)m+k+1uπ2m+2k+1

2(2m+ 2k + 1)!
γ2m+1(u).

In light of (3.14), we can now let u→ 1+, obtaining

0 =

k−1∑
j=0

(−1)j+1π2j+1

2(2j + 1)!
γ2j+1−2k(1) +

∞∑
m=0

(−1)k+1π2k+1fm
2(2m+ 2k + 1)!

, (3.15)

where fm = (−1)mπ2mA2m+1(1;−1).

Setting k = 1 in (3.15) and recalling that γ−1(1) = 2 ln 2, we have the curious
formula

ln 2 =
π2

2

∞∑
m=0

(−1)mπ2m

(2m+ 3)!
A2m+1(1;−1). (3.16)

We can use (3.13) and (3.15) to deduce the following theorem, which gives ζ(2k+
1) recursively in terms of ln 2, ζ(3), . . . , ζ(2k − 1):

Theorem 3.3 For any positive integer k,

(1− 2−2k)ζ(2k + 1) =

k−1∑
j=1

(−1)jπ2j

(2j + 1)!

(
22j−2k − 1

)
ζ(2k − 2j + 1)

− (−1)kπ2k ln 2

(2k + 1)!
+

(−1)kπ2k+2

2

∞∑
m=0

(−1)mπ2mA2m+1(1;−1)

(2m+ 2k + 3)!
. (3.17)

From (3.17), an Euler-type formula for ζ(2k + 1) can be constructed (see [28]
for more details). Finally, we should mention that there are many interesting ap-
plications of Eulerian (Euler-Frobinous) polynomials to spline wavelet analysis, for
instance, in [29] and [30].
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1886.

[8] R. Ehrenborg and M. Readdy, Mixed volumes and slices of the cube, J. Comb.
Theory, Series A, 81 (1998), 121-126.

[9] G. Birkhoff and C. de Boor, Piecewise polynomial interpolation and approxi-
mation. 1965 Approximation of Functions (Proc. Sympos. General Motors Res.
Lab., 1964 ) pp. 164–190 Elsevier Publ. Co., Amsterdam.

[10] I. J. Schoenberg, Cardinal Spline Interpolation, CBMS-NSF Regional Confer-
ence Series in Applied Mathematics, 1973.

[11] C. de Boor, On the cardinal spline interpolant to eiut. SIAM J. Math. Anal. 7
(1976), no. 6, 930–941.

[12] C. deBoor, Chapter II. Splines with uniform knots, draft jul74, TeXed 1997.

[13] C. de Boor, A practical guide to splines. Revised edition. Applied Mathematical
Sciences, 27. Springer-Verlag, New York, 2001.

[14] L. Schumaker, Spline Functions: Basic Theory, John Wiley & Sons, New York,
1981.

[15] O. A. Vasicek and H. G. Fong, Term Structure Modeling Using Exponential
Splines, The Journal of Finance, Vol. 37, No. 2, Papers and Proceedings of the
Fortieth Annual Meeting of the American Finance Association, Washington,
D.C., December 28-30, 1981. (May, 1982), 339-348.

[16] C. Zoppou, S. Roberts and R. J. Renka, Exponential spline interpolation in
characteristic based scheme for solving the advective-diffusion equation, Inter-
national Journal of Numerical Methods in Fluids, 33(3) (2000), 429-452.



16 T. X. He

[17] N. Dyn and A. Ron, Recurrence relations for Tchebycheffian B-splines. J.
Analyse Math. 51 (1988), 118–138.

[18] A. Ron, Exponential box splines. Constr. Approx. 4 (1988), no. 4, 357–378.

[19] T. X. He, Generalized Eulerian fractions, exponential splines, and related top-
ics (Conference talk Abstract), International Conference on Interactions be-
tween Wavelets and Splines, Athens, Georgia, May 16, 2005.

[20] R.-H. Wang, Y. Xu, and Z.-Q. Xu, Eulerian numbers: A spline perspective, J.
Math. Anal. Appl. 370 (2010), 486-490.

[21] C. de Boor, Personal communication, 2005.

[22] C. de Boor, K. Hllig, and S. Riemenschneider, Box splines. Applied Mathe-
matical Sciences, 98. Springer-Verlag, New York, 1993.

[23] R. P. Stanley, Eulerian partitions of a unit hypercube, in “Higher Combina-
torics (Proc. NATO Advanced Study Inst., Berlin, Sept. 1-10, 1976” (Aigner,
M., Ed.), p. 49. NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci.,
31. Reidel, Dordrecht, 1977.

[24] M. Unser, A. Aldroubi, and M. Eden, Fast B-spline transforms for continuous
image representation and interpolation, IEEE Trans. Pattern Analysis and
Machine Intellegence, 13 (1991), No. 3, 277-285.

[25] I. J. Schoenberg, Contributions to the problem of approximation of equidistant
data by analytic functions. Part A. On the problem of smoothing or graduation.
A first class of analytic approximation formulae. Quart. Appl. Math. 4, (1946).
45–99.

[26] C. de Boor, K. Hllig, and S. Riemenschneider, Bivariate cardinal interpolation
by splines on a three-direction mesh. Illinois J. Math. 29 (1985), no. 4, 533–566.

[27] C. de Boor and K. Hllig, Bivariate box splines and smooth pp functions on a
three direction mesh. J. Comput. Appl. Math. 9 (1983), no. 1, 13–28.

[28] M. Dancs and T. X. He, An Euler-type formula for ζ(2k + 1), J. Number
Theory, 118 (2006), 192-199.

[29] C. K. Chui, An Introduction to Wavelets, Academic Press, Inc., New York,
1992.

[30] S. L. Lee, A. Sharma, and H. H. Tan, Spline interpolation and wavelet con-
struction, Appl. Comp. Harmonic Anal. 5 (1998), 249-276.


